The Role of Nitrogen on the Deformation Response of Hadfield Steel Single Crystals

نویسنده

  • D. CANADINC
چکیده

We studied the role of nitrogen content on the stress-strain response of Hadfield steel (HS) single crystals under compressive loading. Two different nitrogen concentrations were examined for each orientation (0.05 wt pct and 1.06 wt pct) with drastic increase in critical resolved shear stresses (CRSSs) and strain-hardening coefficients compared to HS without nitrogen. The stress-strain response was strongly dependent on both the crystallographic orientation and the nitrogen concentration. Transmission electron microscopy (TEM) results revealed that, for the HS with 1.06 wt pct nitrogen, the hardening is influenced by the coexisting deformation twins and precipitates, which both act as strong obstacles against dislocation motion. A visco-plastic self-consistent (VPSC) model was modified to account for precipitation and twinning length scales in HS with 1.06 wt pct nitrogen for selected crystallographic orientations. Incoherent precipitates in the hardening formulation were treated as factors affecting the mean free path of dislocations. The model also accounts for plastic relaxation of precipitates with increasing strain and accurately predicts the stress-strain response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Twinning and Slip on the Bauschinger Effect of Hadfield Steel Single Crystals

The Bauschinger effect (BE) in single crystals of Hadfield manganese steel (Fe, 12.3Mn, 1.0C in wt pct) was studied for three crystallographic orientations, [111], [123], and [001]. Both forward tensionreverse compression (FT/RC) and forward compression-reverse tension (FC/RT) loading schemes were used to investigate the role of deformation history on the BE. The evolution of stress-strain resp...

متن کامل

Strain hardening behavior of aluminum alloyed Hadfield steel single crystals

Very high strain hardening coefficients (=G/23) are observed for aluminum-alloyed face-centered cubic Hadfield steel single crystals under tensile loading. Alloying with aluminum suppressed deformation twinning in two of the three crystallographic orientations studied, and transmission electron microscopy results revealed the existence of dense dislocation walls (sheets) along crystallographic ...

متن کامل

Orientation evolution in Hadfield steel single crystals under combined slip and twinning

The tensile deformation response and texture evolution of aluminum alloyed Hadfield steel single crystals oriented in the h169i direction is investigated. In this material, the strain hardening response is governed by the high-density dislocation walls (HDDWs) that interact with glide dislocations. A microstructure-based visco-plastic self-consistent model was modified to account for mechanical...

متن کامل

Strain hardening and heterogeneous deformation during twinning in Hadfield steel

We identify the role of deformation twinning and twin–twin intersections on the strain hardening behavior of Hadfield steel single crystals using strain field measurements. In situ and ex situ strain field measurements resolved at micrometer length scales are obtained using digital image correlation. Ex situ measurements reveal that macroscopic twin-bands, which are composed of a mixture of fin...

متن کامل

The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals

The deformation response and texture evolution of aluminum alloyed Hadfield steel polycrystals is explored in the presence of high-density islocation walls. A recently developed visco-plastic self-consistent model accounting for the contribution of the dense dislocation walls to strain ardening was utilized in predicting the room temperature deformation response under tension and the accompanyi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005